Copper Homeostasis for the Developmental Progression of Intraerythrocytic Malarial Parasite
نویسندگان
چکیده
Malaria is one of the world's most devastating diseases, particularly in the tropics. In humans, Plasmodium falciparum lives mainly within red blood cells, and malaria pathogenesis depends on the red blood cells being infected with the parasite. Nonesterified fatty acids (NEFAs), including cis-9-octadecenoic acid, and phospholipids have been critical for complete parasite growth in serum-free culture, although the efficacy of NEFAs in sustaining the growth of P. falciparum has varied markedly. Hexadecanoic acid and trans-9-octadecenoic acid have arrested development of the parasite, in association with down-regulation of genes encoding copper-binding proteins. Selective removal of Cu+ ions has blockaded completely the ring-trophozoite-schizont progression of the parasite. The importance of copper homeostasis for the developmental progression of P. falciparum has been confirmed by inhibition of copper-binding proteins that regulate copper physiology and function by associating with copper ions. These data have provided strong evidence for a link between healthy copper homeostasis and successive developmental progression of P. falciparum. Perturbation of copper homeostasis may be, thus, instrumental in drug and vaccine development for the malaria medication. We review the importance of copper homeostasis in the asexual growth of P. falciparum in relation to NEFAs, copperbinding proteins, apoptosis, mitochondria, and gene expression.
منابع مشابه
Involvement of spectrin and ATP in infection of resealed erythrocyte ghosts by the human malarial parasite, Plasmodium falciparum
Resealed erythrocyte ghosts were prepared under different experimental conditions and were tested in vitro for susceptibility to infection with the human malarial parasite, Plasmodium falciparum. Resealed ghosts, prepared by dialyzing erythrocytes in narrow membrane tubing against low ionic strength buffer that was supplemented with magnesium ATP, were as susceptible to parasite infection as we...
متن کاملComputational Investigation on the Photoacoustics of Malaria Infected Red Blood Cells
A computer simulation study on the possibility of using photoacoustic (PA) technique to differentiate intraerythrocytic stages of malarial parasite is reported. This parasite during its development substantially converts hemoglobin into hemozoin. This conversion is expected to alter the cellular absorption leading to changes in the PA emission of a red blood cell (RBC) at certain incident optic...
متن کاملHost-parasite interactions revealed by Plasmodium falciparum metabolomics.
Intracellular pathogens have devised mechanisms to exploit their host cells to ensure their survival and replication. The malaria parasite Plasmodium falciparum relies on an exchange of metabolites with the host for proliferation. Here we describe a mass spectrometry-based metabolomic analysis of the parasite throughout its 48 hr intraerythrocytic developmental cycle. Our results reveal a gener...
متن کاملAntimalarial drugs disrupt ion homeostasis in malarial parasites.
Plasmodium chabaudi malaria parasite organelles are major elements for ion homeostasis and cellular signaling and also target for antimalarial drugs. By using confocal imaging of intraerythrocytic parasites we demonstrated that the dye acridine orange (AO) is accumulated into P. chabaudi subcellular compartments. The AO could be released from the parasite organelles by collapsing the pH gradien...
متن کاملThe GCaMP3 – A GFP-based calcium sensor for imaging calcium dynamics in the human malaria parasite Plasmodium falciparum
Calcium (Ca(2+)) signaling pathways are vital for all eukaryotic cells. It is well established that changes in Ca(2+) concentration can modulate several physiological processes such as muscle contraction, neurotransmitter secretion and metabolic regulation (Giacomello et al. (2007) [1], Rizzuto and Pozzan (2003) [2]). In the complex life cycle of Plasmodium falciparum, the causative agent of hu...
متن کامل